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Tunneling Through Rectangular Plus Linear Barrier

V. C. Aguilera-Navarro, 3 H. Iwamoto,? and V. M. de Aquino?

Tunneling through the superposition of two potential barriers, one rectangular and other
linear, is discussed. Besides its importance in fields like nanostructure, the problem
presents some interesting physical and mathematical features.

KEY WORDS: tunneling; reflection time; transmission time; linear barrier; rectangu-
lar barrier.

1. INTRODUCTION

Despite being an old subject in theoretical physics, the quantum tunneling
phenomenon has many interesting features that lead to yet unsolved problems. If
a patrticle inciding on a potential barrier with unsufficient energy to overcome the
barrier emerges in the other side that means the particle someway went through the
barrier (the very known tunnel effect). In the literature, good and comprehensive
papers on this subject can be found. Among them, we cite the review paper by
Hauge and Stgvneng (1989), Landauer and Martin (1994), and, more recently,
Muga and Leavens (2000). Despite all these and other efforts spent up to now, no
consensus was achieved as yet on how to define and evaluate tunneling times. This
paper addresses this issue in a special case, namely, that in which a linear and a
rectangular potentials superpose.

One legitimatly may ask: What interest the superposition of a rectangular
and a linear barrier could have any way? In the first place, the linear barrier
has its own importance in the construction of nanoscale electronic devices where
this barrier emulates the Schottky potential that emerges because of the presence
of an external electric field. In this paper, we consider also the presence of a
rectangular barrier as a provision for the situations in which the electrons have to
overcome such barrier before reaching the region where the external electric field
acts.
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The analysis is robust in the sense that it safely contemplates many sorts of
similar potential superposition as, e.g., pure rectangular, pure linear, and square
well plus linear potentials.

We will be particularly interested in discussing the reflection and transmission
times through the barrier. This problem has many interesting mathematical features
associated with some particular combinations of Airy functions, and some limit
behavior of them. As it is well known, these functions emerge naturally in the
solution of the Schroedinger equation with a linear potential.

To define notations, in the next section we present a summary of the tunneling
problem through a rectangular barrier. The superposition analysis is presented in
section 3. Results are presented and discussed in section 4.

2. TUNNELING THROUGH A RECTANGULAR BARRIER

A one-dimensional rectangular barrier of hei§ptand widtha is defined as

0 ifx<O (region 1, inciding region)
V(x) =1 VW if0 <x <a (region 2, classically forbidden region) (2.1)
0 ifx>a (region 3, transmitted region)

The energy eigenstates associated to the solutions to the corresponding
Schroedinger equation can be found in most quantum mechanics texts and are given

ui(x) = € + Ae™™  ifx<0

Ug(X) = us(x)=Be”*4+Ce* if0<x=<a (2.2)
us(x) = D &kx if x> a
where
2mE 2mVp
N L AL @3)
and the boundary conditionsxat= 0 andx = a lead to
2 o
B — —%39 it gl (2.4)
2cosd ., _i-
C= e*Z’JaT e el (2.5)
D= —e"’aw g ikagia (2.6)
where
cost = k/ko, sind = p/ko (2.7)

tana = coth(pa) tan(®) (2.8)
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and

r2=1+e %2 _2e 22cos(4) (2.9)

3. THE RECTANGULAR PLUS LINEAR BARRIER

The linear barrier potential of height) and widtha is defined as

0 ifx<0
V(x)={ W(l—-x/a) if0<x<a (3.1)
0 ifx>a

The solution of the associated Schroedinger equation is given in terms of Airy
functions. To deal with the superposition of such potential with a rectangular one,
we introduce the potential

0 ifx<0
V(x) = Vo+<V1;VO)X=V0[1+(,3—1)§] fo<x<a (3.2

0 ifx >a

whereg = Vi/Vp. The potential (3.2) reduces to the rectangular potential (2.1)
wheng = 1, and to the linear potential (3.1) whgn= 0.

For algebraic purpose, it is more convenient to introduce the dimensionless
parameter

n=1-p (3.3)
In terms ofy, the superposition potential (3.2) reads
0 ifx<0

V(x) = v0<1—n§) ifo<x<a (3.4)
0 if x> a

Whenn = 0, we obtain the rectangular potential, and whea 1, we obtain the
linear potential (2.1).
The Schroedinger equation associated with the potential (3.4) can be written as
h? d2y

_ﬁmjuvo(l—gx)w: Ev (3.5)

which can be rewritten as

d?y (&)
ds?

+&y(E)=0 (3.6)
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where
£ =£(x) =QO<gX+52—1> 3.7)
Go = (koa/n)%/? (3.8)
and
€ =Kk/ko (3.9)
The general solution to the Schroedinger equation (3.6) is given by
g+ Agikx X<0
Y(x)= 1 BAi(-§)+CBi(-§) 0<x=<a (3.10)
D &kx X > a

Continuity conditions at the potential boundary produce the following linear equa-
tions for the parametera, B, C, andD

D €*® = B Ai(—&,) + C Bi(—£a) (3.11)
- %08 Ai'(~0) + C Bi'(~£0)

whereAi’(—¢&) andBi’(—£) are the derivatives of the Airy functions with respect
to —&.In Eq. (3.11),

ik(1— A) =

2
Eo=£(0)= 0o (%) (3.12)
and
£ = £(a) = —%(pz — nk?) = &0 + 16 (3.13)

To simplify the algebraic calculation, itis convenient to introduce the complex
quantities

F(§) = ik Ai(—§) — 2 AT(~§) (3.14)

G(&) = Ik Bi(-&) - 2y BI'(-¢) (3.15)
and

A = F*(E)G(E) — FE)G*(E) (3.16)

where the star stands for complex conjugate. In terms of these quantities, we get

A= %[F*(So)G*(éa) — F*(5)G"(%0)] (3.17)
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B = —%ZkG*(ga) (3.18)

C= %ZikF*(sa) (3.19)
_ 1 _ x _ika _ _ 2KQon _ika

D= K[F (52)G(5a) — F(52)G™(6a)] €™ = —aA © (3.20)

where the use was made of the Wronskian of the Airy functions (Abramowitz and
Stegun, 1970)

WA (), Bi(2)] = —

/4
Itis also convenient to define the quantities
Ry = EX[Ai(—£0) Bi(—£a) — Al(—£2)Bi(—£0)] (3.21)
2
Ry = <%) [Ai'(—£a)Bi'(—£0) — Ai'(—£0)Bi'(—£a)] (3.22)
= <%> E[AI(—£a)Bi'(—80) — Ai'(~50) Bi(~£a)] (3.23)

2= <%) ELAT(~£2)Bi(—&0) — Al(-6)BI(—&)]  (3.24)

In terms of these quantities, we have
Ri+Re+i(li+12) ~ Na

A R Riti(i—l) A (3.25)
where
Na=[Ri+ Re+i(l1 + 12)] K3 (3.26)
and
A=[R—Ry+i(ly—12)]k3 (3.27)

Using the polar representation for the complex numiéssand A, i.e., Na =
INal€® andA = |A|€?, it can be shown that

I+ |
tang = —- 1 2 (3.28)
Ri+ R
and
I — |
tany = — 2 (3.29)
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3.1. Reflection and Transmission Times

In terms of the quantitiedla, A, «, and2, defined in (3.26), (3.27), (3.28),
and (3.29), the reflected and transmission wave functions read

Nal . _
Ur(X, 1) = —% g @) gmikx gmiot (3.30)
and
2ik L . .
Yr(x,t) = — Ia|qu|7 gt gkxgiot gika (3.31)
T
where
E hk
o=0k)= =7 (3:32)

Imposing stationary phase condition on the wave function (3.30) at the posi-
tion x = 0, we obtain for the reflection time the expression

da  dA\ m
tr = (& - d_k> T (3.33)
wherea anda are implicitly defined in (3.28) and (3.29).

Introducing the barrier characteristic time

h
to= — 3.34
0= v (3.34)
we can express the reflection time as
tR 1 /0o 0A
—==l=-= 3.35
to €& <85 85) ( )

where€ is defined in (3.9).
Analogously, imposing stationary phase condition on the wave function (3.31)
at the positiorx = a, we obtain for the transmission time the expression

tr 10A
—=——=— 3.36
to EJE ( )
The derivativeda/de can be readily evaluated by noticing that
d do ad I1+ 1o
—(t — = — 3.37
5q BT = 52 <R1 n R2> (3.37)

to get

da 9 [ 11+ 1,
T cofa— [ =2 3.38
e % R+ R (3.38)



Tunneling Through Rectangular Plus Linear Barrier 489

50 T T T T T 4 T

40 | ]

et

30 = i

t,

20 - :

10 + -

0,0 1 1 2 1 1 1 It 1 n
00 02 0.4 0.6 0.8 10

p

Fig. 1. Reflection time as a function of the barrier paramegtdor kpa = 1, and
some values ok. Dotted line:k/ko = 0.5; dashed linek/ky = 0.8; continuous
line:k/ko = 1.1. Notice thak/ ko > 1 means that the particle is inciding above the
barrier, and8 = 1 for a pure rectangular potential.

A little more algebra produces the results

0 0
R Ry)— (I 15) — (I I,)—(R R
3_a=( 1+ 2)88(14- 2) —(li + 2)88( 1+ Rp)
de A2

kg (3.39)
Analogously, we obtain

3 (Re=R)Z(i— 1)~ (11— )5 (R~ R)

0 = N kg (3.40)
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Fig. 2. Reflection time as a function of the barrier widdh for k/ko = 0.5, and several
values of the barrier parametgr Dotted line:8 = 0.01; dashed line8 = 0.5; continuous
line: 8 = 0.99.

The derivatives of the quantitieR;, Ry, 11, and I, can be obtained from
known relations between the Airy functions and its derivatives (Abramowitz and
Stegum, 1970). The results are

oR 2R a
IR _ 2R, okod
ae & n
R,
de

(li+12) (3.41)

2
= —koa(sall + &ol2) (3.42)
Con
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Fig. 3. Reflection time as a function of the barrier width, and several values of the barrier parameter
B. (1) k/ko = 1.1 (particle inciding above the barrier); (kY ko = 0.94. Dotted line8 = 0.5; dashed
line: B = 0.75; continuous lineg ~ 1.

al I %koa a
M _hh pekan  ka, o (3.43)
de € n don
al I 2koa a
Mo _ 2 ek okd g (3.44)
e & n Gon

4. RESULTS AND DISCUSSION

In the previous few figures, we show the behavior of the reflection and trans-
mission times for particular situations.

Figure 1 displays the reflection time, in unitst@fEq. (3.34), as a function of
the barrier parametet, for a barrier of widtha = 1 (in units ofkgl), and several
values ofk. Whenk/kgy > 1, the particle is inciding above the barrier.

Figure 2 displays the reflection time, in unitstgfas a function of the barrier
width a, for k/kg = 0.5, and several particular values of the barrier parameter
B. Notice thatg = 0 implies a pure linear potential amgl= 1 implies a pure
rectangular potential. For very thick barriég# >> 1), the top of the trapezoidal
potential is nearly flat as felt by the inciding particle. In this case, the reflection
time shows very little dependence on the potential parangeter

Figure 3 displays the reflection time, in unitstgfas a function of the barrier
width a, for k/ kg = 1.1 (particle inciding above the barrier), akgko = 0.94 for
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Fig. 4. Transmission time as a function of the barrier width, gk, = 0.5, and
several values of the barrier parametebDotted line;8 = 0.1; dashed lineg8 = 0.5;
continuous line = 0.9.

several values of the barrier paramegerThe oscillations in the reflection time
are indication of occurrence of resonances, which produce negative reflection
times for some values 8 whenk/ky ~ 1. These resonances are present in a
rectangular barrier but the negative times are not. This known result is illustrated
by the continuous curved(~ 1).

Figure 4 displays the transmission time, in unit§pEg. (3.34), as a function
of the barrier parametg, for a barrier of widtra = 1 (in units ofkgl), and several
values ofk. Whenk/kgy > 1, the patrticle is inciding above the barrier.

Figure 5 displays the transmission time, in unitdgfas a function of the
barrier widtha, for k/ ko = 0.8 and several values of the barrier paramgterhe
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Fig. 5. Transmission time as a function of the barrier widtor k/ ko = 0.8, and
several values of the barrier parametebotted line:8 = 0.1; dashed line8 = 0.5;
continuous lineg = 0.9.

oscillations in the transmission time disappear for a nearly rectangular potential,
unless the particle reaches the potential with higher energy than the barrier height
(see next figure).

Figure 6 displays the transmission time, in unitdgfas a function of the
barrier widtha, for k/kg = 1.1 (particle inciding above the barrier), and several
values of the barrier parametgr

Finally, by taking the Taylor expansion of the Airy functiondj(—&a,),
Bi(—&,) and is derivativeAi’(—&,), Bi'(—&,) aroundgy, it can be shown that the
scattering coefficients associated with the trapezoidal potential reproduce those as-
sociated with the rectangular potential (limit@®f— 1) (Iwamotoet al,, in press).
Some cumbersome but straighforward calculations show that in this limit, and
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Fig. 6. Transmission time as a function of the barrier widthfor k/ko = 1.1, and sev-
eral values of the barrier paramefgr Dotted line: 8 = 0.01; dashed lineg = 0.5; and
continuous line = 0.99.

when the particle is inciding above the barrier, the reflection and transmission times

coincide with the phase time. This result is seen in Fig. 3 and 6, continuous line.
When g « 1, the behavior of transmission time is the same as for a linear

potential discussed in Got al. (2002).

5. ACKNOWLEDGMENT

We thank Fundefo Arauelria (Paraa) for financial support.



Tunneling Through Rectangular Plus Linear Barrier 495

REFERENCES

Abramowitz, M. and Stegun, I. A. (197Mlandbook of Mathematical FunctionBover, New York.

Aquino, V. M., Aguilera-Navarro, V. C., Goto, M., and lwamoto, H. (1998). Tunneling time through a
rectangular barriePhysical Review A8, 4359.

Goto, M., lwamoto, H., de Aquino, V. M., and Aguilera-Navarro, V. C. (2002). Reflection and trans-
mission times through a linear potentildternational Journal of Theoretical Physidd, 877.

Hauge, E. H. and Stgvneng, J. A. (1989). Tunneling times: a critical reRewew of Modern Physics
61, 917.

lwamoto, H., Aquino, V. M., and Aguilera-Navarro, V. C. (2003). Scattering coefficients for a trape-
zoidal potentiallnternational Journal of Theoretical Physic$2, 1995.

Landauer, R. and Martin, Th. (1994). Barrier interaction time in tunneR&yiew of Modern Physics
66, 217.

Muga, J. G. and Leavens, C. R. (2000). Arrival time in quantum mechatigsics Report338 353.



